Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces.

نویسندگان

  • Natalia Cañas
  • Marleen Kamperman
  • Benjamin Völker
  • Elmar Kroner
  • Robert M McMeeking
  • Eduard Arzt
چکیده

In this work, the adhesion of biomimetic polydimethylsiloxane (PDMS) pillar arrays with mushroom-shaped tips was studied on nano- and micro-rough surfaces and compared to unpatterned controls. The adhesion strength on nano-rough surfaces invariably decreased with increasing roughness, but pillar arrays retained higher adhesion strengths than unpatterned controls in all cases. The results were analyzed with a model that focuses on the effect on adhesion of depressions in a rough surface. The model fits the data very well, suggesting that the pull-off strength for patterned PDMS is controlled by the deepest dimple-like feature on the rough surface. The lower pull-off strength for unpatterned PDMS may be explained by the initiation of the pull-off process at the edge of the probe, where significant stress concentrates. With micro-rough surfaces, pillar arrays showed maximum adhesion with a certain intermediate roughness, while unpatterned controls did not show any measurable adhesion. This effect can be explained by the inability of micropatterned surfaces to conform to very fine and very large surface asperities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.

Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. Certain plant leaves, such as lotus leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical roughness of their leaf surfaces. The self-cleaning phenomenon is widel...

متن کامل

Roughness Model for Adhesion Testing of Pharmaceutical Coating Materials

Objective Roughness is the main parameter in interlocking bonding mechanism. Yet there is no model designed to evaluate the effect of surface roughness on adhesion of coating materials in pharmaceutical sciences. Materials and Methods In this study polymethyl metacrylate spherical beads with different sizes were poured into 10 mm mold, then it was pressed by hand screw and finally heated to 141...

متن کامل

Nano-Scale Effect in Adhesive Friction of Sliding Rough Surfaces

Study of contact and friction at multiple length scales is necessary for the effective design and analysis of surfaces in sliding microand nano-electromechanical systems (MEMS/NEMS). As loading forces decrease in such applications, the size of the asperity contacts tends to decrease into the nano scale regime. Also with the increase in surface area to volume ratio in such systems, the surface f...

متن کامل

Effect of Nano and Micro Silica on the pyroplastic deformation of Domestic porcelain tile

The term " pyroplasticity" refers to the deformation of the white ware that occurs during firing. In particular, this phenomenon is particularly important for tiles fired in roller kiln (especially thin and large dimensions) and the roughness created on the surface by vertical weight. In this study, 1, 3 and 5% of nanosilica and microsilica were replaced in porcelain tile batch. The effect of n...

متن کامل

Pretreatment Effect on the Properties of Electroless Nano - Crystalline Nickel Phosphorous Coating

the influence of mechanical polishing pre-treatments on steel substrates is investigated in terms of microstructure, deposition rate, adhesion, mechanical and corrosion properties of electroless Ni-P nanocoating with 9-10% wt. of P content. XRD analysis of Ni-P coatings demonstrated the nanocrystalline structure of coating with the grain size of 39 nm. Results showed that pretreatment of substr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2012